LESSON PLAN

Discipline: Civil Engg.	Semester: Third (3 rd)	Name of the Faculty: Er Bapuji Nayak
Subject: Structural Mechanics	No. of days per week class allotted: Four (4)	Semester from Date: 15.09.22 to Date: 22.12.22 No. of Weeks: 15
WEEK	CLASS DAY	THEORY TOPICS
	st 1	Basic principle of mechanics ; force, moment , support conditions, conditions of equilibrium
	nd 2	C.G and MI free body diagram
st 1	rd 3	Review of CG and MI of different sections Review class
	th 4	Introduction to stresses and strains: mechanical properties of materials- Rigidity ,Elasticity, Plasticity , Compressibility
nd 2	st 1	Hardness ,Toughness , Stiffness , Brittleness , Ductility, Malleability, Creep, Fatigue, Tenacity, Durability
	nd 2	Types of stresses -Tensile, Compressive and Shear stresses,
	rd 3	Types of strains - Tensile, Compressive and Shear strains, complimentary shear stress diagonal tensile / comp.
	th 4	Stresses due to shear elongation and contraction longitudinal and lateral strain, poison ratio, volumetric strain ,computation of stress strain poison ratio,change in dimensions and volume etc Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants
3 rd	st 1	Application of simple stress and strain in engineering field: Behavior of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material
	nd 2	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area,
	rd 3	Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight
	th 4	Complex stress and strains -Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes,
4 th	st 1	major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses

	nd 2	Problems for practice
	rd 3	Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance , Review class
	th 4	Monthly test
5 th	st 1	Moment of resistance -Equation for Flexure– Flexural stress distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus
	nd 2	Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.
	rd 3	Stresses in shafts due to torsion: Concept of torsion, basic assumptions of pure torsion, torsion of solid and hollow circular sections, Polar moment of inertia, torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
	th 4	Combined bending and direct stresses : Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension.
	st 1	Limit of eccentricity, Middle third/fourth rule,
6 th	nd 2	Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls
	rd 3	Review class
	th 4	Columns and Struts Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio
7 th	st 1	Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions
	nd 2	Review class
	rd 3	Types of loads Concentrated (or) Point load, Uniformly Distributed load (UDL),
	th 4	Types of Supports: Simple support, Roller support, Hinged support, Fixed support.
8 th	st 1	Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction.

	nd 2	Types of Beams based on support conditions:
	rd 3	Calculation of support reactions using equations of static equilibrium Shear force and bending moment in beams:
	th 4	Shear Force and Bending Moment: Signs Convention for S.F. and B.M
9 th	st 1	S.F and B.M of general cases of determinate beams with concentrated loads and udl only
	nd 2	S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams,
	rd 3	Monthly test
	th 4	Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M
10 th	st 1	Review class
	nd 2	Introduction -Shape and nature of elastic curve (deflection curve);
	rd 3	Relationship between slope, deflection and curvature (No derivation)
	th 4	Importance of slope and deflection.
11 th	st 1	Slope and deflection of cantilever
	nd 2	Slope and deflection of simply supported beams under concentrated and uniformly distributed load
	rd 3	Double Integration method, Macaulay's method).
	th 4	Problems for practice
12 th	st 1	Review class
	nd 2	Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever,

	rd 3	Fixed and two span continuous beams by principle of superposition,
	th 4	Monthly test
13 th	st 1	SF and BM diagrams (point load and udl covering full span
	nd 2	Problems for practice
	rd 3	Problems for practice
	th 4	Review class
14 th	st 1	Introduction -Types of trusses, statically determinate and indeterminate trusses
	nd 2	Degree of indeterminacy
	rd 3	Stable and unstable trusses, advantages of trusses.
	th 4	Analysis of trusses
15 th	st 1	Analytical method (Method of joints, method of Section)
	nd 2	Monthly test
	rd 3	Problems for analysis
	th 4	Problems for analysis Review class